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Abstract
A criterion for the uniqueness of limit cycles for generalized Liénard-type
system is established. Through a simple change of variable, three planar
autonomous systems, which arise from the study of theoretical models for
oscillating reactions, can be transformed into a better studied generalized
Liénard-type system. As a result, the uniqueness of limit cycles of these
systems is obtained.
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1. Introduction

In the study of the two-dimensional dynamical system

x ′(t) = F(x, y), y ′(t) = G(x, y),

the question of the number of limit cycles is often encountered. Many published works refer
to specific classes of systems, for example, the Liénard system

x ′(t) = π(y) − h(x), y ′(t) = −ψ(x), (1.1)

and predator–prey system,

x ′(t) = ϕ(x)(h(x) − π(y)), y ′(t) = ρ(y)ψ(x), (1.2)

etc. There exists extensive literature on them, not least because they arise in frequent
applications. For the uniqueness of limit cycles for (1.1), criteria which have been widely
used are those in Cherkas and Zhilevich [1] and Zhang [2]. Based on the requirement
of monotonicity of h′/ψ, they compared the Floquet exponent of periodic solutions and
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concluded that the innermost periodic solution will reach the largest Floquet exponent. Then
according to the theory of a rotated vector field [3], one can obtain that the innermost periodic
solution is orbitally asymptotically stable. Hence, the uniqueness of limit cycles follows. The
idea of the proof was modified by other authors (see Ding [4] and Hwang [5]) to establish
the uniqueness of limit cycles of (1.2). By using the symmetry of prey isocline, Cheng [6]
proved the uniqueness of limit cycles for a specific predator–prey system with Holling type
II functional response and the idea was extended by Liou and Cheng [7] to a predator–prey
system of Gauss type and obtained some criteria of uniqueness. Hsu and Hwang [8] use the
method of reflection to obtain a sufficient condition for the uniqueness of limit cycles of a
Leslie-type predator–prey system. By transforming (1.2) into (1.1), Kuang and Freedman [9],
and Huang and Merrill [10] obtained the uniqueness theorem of (1.2) with a general functional
response. Recently, a criterion of (1.1), without the monotonicity of h′/ψ, was provided by
Xiao and Zhang [11].

In the next section, with a slight modification of the theorem obtained by Hwang [5], we
establish conditions to ensure that the number of limit cycles of the following system (1.3)
does not exceed 1:

x ′(t) = ϕ(x)(π(y) − h(x)) ≡ F(x, y),

y ′(t) = −ψ(x) ≡ G(x, y),

x(0) = x0, y(0) = y0,

(1.3)

where ϕ, h,ψ are C1 on (r1, r2) ⊆ R and π is C1 on R. Moreover, all these functions satisfy
the following assumptions:

(A1) π ′(y) > 0 for y ∈ R;
(A2) ϕ(x) > 0 for x ∈ (r1, r2);
(A3) There exists λ ∈ (r1, r2) such that ψ ′(λ) > 0 and (x−λ)ψ(x) > 0 for x ∈ (r1, r2)−{λ};
(A4) h((r1, r2)) ⊆ π(R).

Note that system (1.3) is exactly the Liénard system if ϕ(x) = 1 for x ∈ (r1, r2). Hence,
our results can be viewed as an extension of those obtained by Cherkas and Zhilevich for
(1.1). In section 3, three planar autonomous systems, which arise from the study of theoretical
models for oscillating reactions, are provided to show the applicability of the main theorems.
Finally, a brief concluding remark is given in section 4.

2. Main results

It is clear that system (1.3) has equilibrium at e� = (λ, y�), where y� = π−1(h(λ)) > 0. The
Jacobian of system (1.3) at e� is

J =
[−ϕ(λ)h′(λ) ϕ(λ)π ′(y�)

−ψ ′(λ) 0

]
.

The eigenvalues are given by[−ϕ(λ)h′(λ) ±
√

(ϕ(λ)h′(λ))2 − 4ϕ(λ)ψ ′(λ)π ′(y�)
]/

2.

Hence e� is stable if h′(λ) > 0 and e� is unstable if h′(λ) < 0.

Theorem 2.1. Let the assumptions (A1)–(A4) hold. Assume that there exists a, b ∈ R such
that

0 �= ϕ(x)h′(x) + aψ(x) + bψ(x)h(x) � 0, on (r1, r2).

Then system (1.3) has no periodic solution in (r1, r2) × R.
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Proof. It is sufficient to prove that � = (r1, r2) × R contains no periodic solution of
system (1.3). Let H(x, y) = l(x)r(y), where

r(y) = exp

(∫ y

y�

(a + bπ(η)) dη

)
and

l(x) = (ϕ(x))−1 exp

(
b

∫ x

λ

ψ(ξ)

ϕ(ξ)
dξ

)
.

Then,

r ′(y)

r(y)
= a + bπ(y),

ϕ′(x)

ϕ(x)
+

l′(x)

l(x)
= b

ψ(x)

ϕ(x)
,

and

� = ∇ · (FH,GH)

= −H(x, y)

[
ϕ(x)h′(x) + ϕ(x)h(x)

(
ϕ′(x)

ϕ(x)
+

l′(x)

l(x)

)

− π(y)ϕ(x)

(
ϕ′(x)

ϕ(x)
+

l′(x)

l(x)

)
+ ψ(x)

r ′(y)

r(y)

]
= −H(x, y)(ϕ(x)h′(x) + aψ(x) + bψ(x)h(x)) � 0 on �.

Hence, the assertion follows by the Dulac criterion. �

Theorem 2.2. Suppose that h′(λ) < 0 and (A1)–(A4) hold and, moreover, there exist α, β � 0
such that

(A5) α + βh(x) > 0 for all x ∈ (r1, r2);
(A6) d

dx

(
ϕ(x)h′(x)

ψ(x)(α+βh(x))

)
� 0 for all x ∈ (r1, r2) − {λ}.

Then system (1.3) possesses at most one limit cycle, and if it exists then it is stable.

Proof. If β = 0 then, from (A5), we obtain α > 0. Hence, the assumption (A6) is exactly the
condition provided by Zhang [2]. Thus, we only consider β > 0. Without loss of generality,
we may assume that system (1.3) has nontrivial periodic orbits. Let �(t) = (x(t), y(t)) be
any periodic solution of (1.3) and a, b ∈ R; one obtains

ψ(x(t))(a + bh(x(t))) = −(a + bπ(y(t)))y ′(t) − b
ψ(x(t))

ϕ(x(t))
x ′(t)

and

∇ · (F,G)(�(t)) = −ϕ(x(t))h′(x(t)).

Consequently, ∮
�

∇ · (F,G)(�(t)) dt =
∮

�

[−ϕ(x)h′(x) − ψ(x)(a + bh(x))] dt.

Since e� is unstable, there must be a periodic orbit �1 which is the nearest one around e�. It
follows that �1 must be stable from inside, and by the Poincaré criterion of stability, we get∮

�

∇ · (F,G)(�(t)) dt � 0.

Let x1 = min{x|(x, y) ∈ �1} and z = max{x|(x, y) ∈ �1}. Define

a = − ϕ(x1)h
′(x1)

ψ(x1)(α + βh(x1))
α, b = − ϕ(x1)h

′(x1)

ψ(x1)(α + βh(x1))
β, (2.1)



8214 T-W Hwang and H-J Tsai

e�

A2

A1

D C2

C1

B2

B1

Q

r1 x1 λ x2 z r2

Figure 1.

and

w(x) = ϕ(x)h′(x) + aψ(x) + bψ(x)h(x).

Clearly, x1 ∈ (r1, λ) and w(x1) = 0. Since w(x)/ψ(x)[α+βh(x)] is non-decreasing in (r1, r2)

and ψ(x) < 0 in (r1, λ), we have w(x) > 0 as x ∈ (r1, x1) and w(x) < 0 as x ∈ (x1, λ). If
w(x) � 0 as x ∈ (λ, z) then

0 �
∮

�1

∇ · (F,G) dt = −
∮

�1

w(x(t)) dt > 0,

a contradiction. Hence, there must exist an x2 such that w(x) < 0 as x ∈ (x1, x2) and
w(x) > 0 as x ∈ (r1, x1) ∪ (x2, r2). Suppose there exists another periodic orbit �2 that is
outside and closest to �1. The vertical line x = x1 intersects the orbit �2 at points A2 and
D (see figure 1). The vertical line x = x2 intersects �1 and �2 at points B1, C1 and B2, C2,
respectively. Then,∮

�1

w(x) dt =
(∫

Â1C1

+
∫

Ĉ1B1

+
∫

B̂1A1

)
w(x) dt,

∮
�2

w(x) dt =
(∫

Â2D

+
∫

D̂C2

+
∫

Ĉ2B2

+
∫

B̂2A2

)
w(x) dt.

Let y = y1(x) and y = y2(x) denote the functions of curves Â1B1 and Â2B2, respectively.
Then,∫

B̂2A2

w(x) dt −
∫

B̂1A1

w(x) dt

=
∫ x1

x2

w(x)

ϕ(x)(π(y2(x)) − h(x))
dx −

∫ x1

x2

w(x)

ϕ(x)(π(y1(x)) − h(x))
dx

= −
∫ x2

x1

w(x)

ϕ(x)

π(y1(x)) − π(y2(x))

[π(y1(x)) − h(x)][π(y2(x)) − h(x)]
dx > 0.

Similarly, we can prove∫
D̂C2

w(x) dt −
∫

ÂC1

w(x) dt > 0.
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Since
d

dx

(
w(x)

ψ(x)(α + βh(x))

)
= d

dx

(
ϕ(x)h′(x)

ψ(x)(α + βh(x))

)
> 0

as x ∈ (r1, r2) − {λ} and w(x1) = w(x2) = 0, one has∫
Â2D

w(x) dt =
(∫

Â2D

+
∫

DA2

)
w(x) dt

=
∮

A2DA1A2

w(x)

ψ(x)(α + βh(x))

[
−β

ψ(x)

ϕ(x)
dx − (α + βπ(y)) dy

]

=
∮

A2A1DA2

w(x)

ψ(x)(α + βh(x))

[
β

ψ(x)

ϕ(x)
dx + (α + βπ(y)) dy

]

=
∫ ∫

�1

(α + βπ(y))
d

dx

(
w(x)

ψ(x)(α + βh(x))

)
dx dy > 0

where DA2 is line segment from point D to point A2, and∫
Ĉ2B2

w(x) dt −
∫

Ĉ1B1

w(x) dt

=
∫

̂B2B1QC1C2B2

w(x)

ψ(x)(α + βh(x))

[
−β

ψ(x)

ϕ(x)
dx − (α + βπ(y)) dy

]

=
∫

̂B2C2C1QB1B2

w(x)

ψ(x)(α + βh(x))

[
β

ψ(x)

ϕ(x)
dx + (α + βπ(y)) dy

]

=
∫ ∫

�2

(α + βπ(y))
d

dx

(
w(x)

ψ(x)(α + βh(x))

)
dx dy > 0

where �1 and �2 are two regions bounded by the above two closed paths, respectively. Thus,∮
�2

∇ · (F,G) dt = −
∮

�2

w(x) dt < −
∮

�1

w(x) dt =
∮

�1

∇ · (F,G) dt � 0.

Since two periodic orbits with the same stability cannot exist side by side, we conclude that
�1 is externally unstable. To obtain a contradiction, let θ(x) and H(x) be the solutions of the
following initial value problems:

θ ′(x) = βw(x)

α + βh(x)

θ(x)

ϕ(x)
(1 + θ(x)), θ(x2) = 1; (2.2)

and

H ′(x) + b
ψ(x)

ϕ(x)
H(x) = θ(x)

ϕ(x)
w(x), H(x2) = 0, (2.3)

respectively. Note that θ(x) > 0, θ ′(x) > 0 for x ∈ (x2, r2) and they are defined. Moreover,
since

(
exp

(
b

∫ x

x2

ψ(ξ)

ϕ(ξ)
dξ

)
H(x)

)′ = exp
(
b

∫ x

x2

ψ(ξ)

ϕ(ξ)
dξ

)
θ(x)

ϕ(x)
w(x) > 0 as long as θ(x) is defined,

one has H(x) > 0 as long as θ(x) is defined. Now consider the new system

x ′(t) = ϕ(x)(π(y) − hε(x)) ≡ Fε(x, y), ε � 0
y ′(t) = −ψ(x)

(2.4)

where

hε(x) =
{
h(x) if x ∈ (r1, x2]
h(x) + εH(x) if x ∈ (x2, r2).

Clearly, hε ∈ C1 for ε � 0, and system (2.4) satisfies assumptions (A1)–(A5). Systems (2.4)
and (1.3) are identical on (r1, x2] and (2.4) forms a family of rotated vector fields with respect
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to ε on x ∈ (x2, r2), and hence forms a family of generalized rotated vector fields on �. As
0 < ε 	 1 the semi-stable limit cycle �1 will split into at least two limit cycles �′

1 and �′′
1 ,

where �′
1 is enclosed by �′′

1 and, moreover, �′′
1 is at least unstable on the outside and �′

1 is at
least stable from the inside, i.e.,∮

�′′
1

∇ · (F,G) dt � 0 �
∮

�′
1

∇ · (F,G) dt.

If we can show that the assumption (A6) holds for system (2.4), then by applying a similar
argument at the beginning of the proof, one obtains∮

�′′
1

∇ · (Fε,G) dt <

∮
�′

1

∇ · (Fε,G) dt,

a contradiction. So, the proof will be completed if the assumption (A6) holds for system (2.4).
To see this, let

�ε(x) = ϕ(x)h′
ε(x)

ψ(x)[α + βhε(x)]
; wε(x) = ϕ(x)h′

ε(x) + ψ(x)[α + βhε(x)];
and

qε(x) = wε(x)

ψ(x)[α + βhε(x)]
= �ε(x) +

b

β

for x ∈ (r1, r2) − {λ} and 0 < ε 	 1. Since hε = h on (r1, x2] and 0 < ε 	 1, one obtains
that wε(x) = w(x) and �ε(x) = ϕ(x)h′(x)

ψ(x)[α+βh(x)] if x ∈ (r1, x2] − {λ} and 0 < ε 	 1. Thus,

�′
ε(x) = d

dx

(
ϕ(x)h′(x)

ψ(x)[α+βh(x)]

)
> 0 on x ∈ (r1, x2] − {λ} and 0 < ε 	 1. If x ∈ (x2, r2) and

0 < ε 	 1, then, since hε(x) = h(x) + εH(x) and (2.3), we have

wε(x) = ϕ(x)(h′(x) + εH ′(x)) + ψ(x)[a + b(h(x) + εH(x))]

= w(x) + εϕ(x)

[
H ′(x) + b

ψ(x)

ϕ(x)
H(x)

]
= (1 + εθ(x))w(x)

and

qε(x) = wε(x)

ψ(x)[α + βh(x) + εβH(x)]

= (1 + εθ(x)) · w(x)

ψ(x)[α + βh(x)]
· α + βh(x)

α + βh(x) + εβH(x)
.

Hence, from (2.2), (2.3) and (A6), we have

�′
ε(x) = q ′

ε(x)

= (1 + εθ(x)) · d

dx

(
w(x)

ψ(x)[α + βh(x)]

)
· α + βh(x)

α + βh(x) + εβH(x)

+ εθ ′(x) · w(x)

ψ(x)[α + βh(x)]
· α + βh(x)

α + βh(x) + εβH(x)

+ (1 + εθ(x)) · w(x)

ψ(x)[α + βh(x)]
· εβ[βh′(x)H(x) − (α + βh(x))H ′(x)]

[α + βh(x) + εβH(x)]2

> εθ ′(x) · w(x)

ψ(x)[α + βh(x)]
· α + βh(x)

α + βh(x) + εβH(x)

+ (1 + εθ(x)) · εβ
w(x)

ψ(x)[α + βh(x)]
· w(x)[βH(x) − (α + βh(x))θ(x)]

ϕ(x)[α + βh(x) + εβH(x)]2

>
εw(x)

ψ(x)[α + βh(x) + εβH(x)]
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×
(

θ ′(x) − (1 + εθ(x))
θ(x)

ϕ(x)

βw(x)

α + βh(x) + εβH(x)

)

>
εw(x)

ψ(x)[α + βh(x) + εβH(x)]

(
θ ′(x) − (1 + θ(x))

θ(x)

ϕ(x)

βw(x)

α + βh(x)

)
= 0.

Hence, system (1.3) possesses at most one limit cycle, and if it exists it is stable. This
completes the proof of theorem 2.2. �

Remark. If α = 1 and β = 0 then theorem 2.2 is the criterion for the uniqueness of limit
cycle given by Zhang [2].

Theorem 2.3. Let assumptions (A1)–(A4) hold. Assume

(i) There exist α, β � 0 such that α + βh(x) > 0 and q(x) = ϕ(x)h′(x)−ϕ(λ)h′(λ)

ψ(x)(α+βh(x))
is C1 and

q ′(x) � 0 on (r1, r2);
(ii) d

dx
(ψ(x)(α + βh(x))) > 0 on (r1, r2).

Then system (1.3) possesses at most one limit cycle in �.

Proof. The proof will be divided into two cases. �

Case 1. h′(λ) � 0. Since q ∈ C1 and q ′(x) � 0 on (r1, r2), we have

ϕ(x)h′(x) − ϕ(λ)h′(λ) = q(x)ψ(x)(α + βh(x)) � q(λ)ψ(x)(α + βh(x)) on (r1, r2).

Hence, ϕ(x)h′(x) � q(λ)ψ(x)(α + βh(x)) + ϕ(λ)h′(λ) on (r1, r2). Thus, theorem 2.1 implies
that system (1.3) has no periodic orbit in �.

Case 2. h′(λ) < 0. Since q(x) = ϕ(x)h′(x)

ψ(x)(α+βh(x))
− ϕ(λ)h′(λ)

ψ(x)(α+βh(x))
on (r1, r2) − {λ}, we have

d

dx

(
ϕ(x)h′(x)

ψ(x)(α + βh(x))

)
= q ′(x) + ϕ(λ)h′(λ)

d

dx

(
1

ψ(x)(α + βh(x))

)
> 0

on (r1, r2) − {λ}. Hence, the assertion follows from theorem 2.2.

Remark. If e� is locally asymptotically stable, then condition (2) in theorem 2.3 is not
necessary.

3. Examples

We present some models from the chemical literature.

Examples 3.1. The Brusselator [12, 13] is a simple model of a hypothetical chemical oscillator,
named after the home of the scientists who proposed it. In dimensionless form, the system is

x ′(t) = 1 − (b + 1)x + ax2y; y ′(t) = bx − ax2y (3.1)

where a, b > 0 are parameters and x, y � 0 are dimensionless concentrations.

Theorem 3.1. System (3.1) possesses at most one limit cycle in R2
+.

Proof. Consider the change of variables:

u = −1/ax; v = x + y.

Then, system (3.1) reduces to

u′(t) = au2 + (b + 1)u + (v + 1/au) ≡ v − h(u),

v′(t) = (au + 1)/au ≡ −ψ(u)
(3.2)



8218 T-W Hwang and H-J Tsai

0 0.5 1 1.5
0

0.5

1

1.5
(a)

a=1,b=1

+

x

y

0 1 2 3 4
0

1

2

3

4

5
 (b)

a=1,b=3

+

x

y

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5
(c)

a=1,b=1

+

x

y

0 1 2 3 4
0

1

2

3

4

5

6
(d )

a=1,b=3

+

x

y

Figure 2. Parts (a), (c) illustrate the case when e� is the global attractor of (3.1) and (3.2),
respectively. Parts (b), (d) illustrate the case when a limit cycle is the global attractor of (3.1) and
(3.2), respectively.

where ϕ(u) = 1, ψ(u) = −(u − λ)/u, h(u) = −(a2u3 + a(b + 1)u2 + 1)/au and λ =
−1/a < 0. The equilibrium of this system is e� = (λ, h(λ)). Since h′(u) = −(2au + b + 1 −
1/au2), we have

q(u) = (h′(u) − h′(λ))/ψ(u) = 2au + (λ + u)/aλ2u.

Hence, q is C1 and q ′(u) = 2a − 1/aλu2 > 0. Thus, the assertion follows from theorem 2.3
(see figure 2.) �

Example 3.2. To demonstrate oscillations in a simple chemical reaction, Schnackenberg
[12, 14] provided the following hypothetical model:

2X + Y ←→ 3X

A −→ Y

X −→ B.

After nondimensionalizing, Schnackenberg obtained the system

x ′(t) = a − x + x2y, y ′(t) = b − x2y, (3.3)

where a, b > 0 are parameters and x, y > 0 are dimensionless concentrations.

Theorem 3.2. System (3.3) possesses at most one limit cycle in R2
+.

Proof. Through the change of variables

u = −1/x, v = x + y,



Uniqueness of limit cycles in oscillating reactions 8219

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1
(a)

a=1,b=1

+

x

y

0 1 2 3 4
0

1

2

3

4
(b)

a=0.1,b=0.5

+

x

y

0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5
(c)

a=1,b=1
+

x

y

0 1 2 3 4
0

1

2

3

4

5
(d )

a=0.1,b=0.5

+

x

y

Figure 3. Parts (a), (c) illustrate the case when e� is the global attractor of (3.3) and (3.4),
respectively. Parts (b), (d) illustrate the case when a limit cycle is the global attractor of (3.3) and
(3.4), respectively.

system (3.3) becomes

u′(t) = v + au2 + u + 1/u ≡ v − h(u),

v′(t) = a + b + 1/u ≡ −ψ(u)
(3.4)

where ϕ(u) = 1, ψ(u) = 1/λ − 1/u, h(u) = −(au2 + u + 1/u) and λ = −(a + b)−1 < 0.

The positive equilibrium of this system is e� = (λ, h(λ)). The assertion is easy to verify by
observing that

q(u) = (h′(u) − h′(λ))/ψ(u) = −2aλu − (λ + u)/uλ.

Thus, q is C1 and q ′(u) = −2aλ + 1/u2 > 0. Hence, the assertion follows from theorem 2.3
(see figure 3.) �

Examples 3.3. Glycolysis [12, 15, 16] is one major reaction stage of the oxidation of glucose:

C6H12O6 + 6O2 → 6CO2 + 6H2O + energy,

and contains the following sequence of steps:

glucose → GGP → FGP → PFK

ATP � ADP
→ FDP → products,

where

GGP = glucose-6-phosphate,

FGP = fructose-6-phosphate,
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FDP = fructose-1,6-diphosphate,

ATP = adenosine triphosphate,

ADP = adenosine diphosphate,

PFK = phosphofructokinase.

It is assumed that the enzyme phosphofructokinase has two states, one of which has a higher
activity. ADP stimulates this allosteric regulatory enzyme and produces the more active form.
Thus, a product of the reaction step mediated by PFK enhances the rate of reaction. A
schematic version of the kinetics is

substrates → FGP
+

� ADP → products.

Equations for this system are as follows:

x ′(t) = δ − kx − xy2, y ′(t) = kx + xy2 − y, (3.5)

where δ, k > 0 and x, y denote the concentrations for FGP, ADP, respectively.

Theorem 3.3. System (3.5) possesses at most one limit cycle in R2
+.

Proof. Consider the change of variables: v = x + y. Then, we have

y ′(t) = (y2 + k)

[
v −

(
y +

y

y2 + k

)]
≡ ϕ(y)[v − h(y)],

v′(t) = δ − y = −(y − δ) ≡ −ψ(y),

(3.6)

where ϕ(y) = k + y2, ψ(x) = y − δ, h(y) = y + y

y2+k
, and the equilibrium of this system

is e� = (δ, h(δ)). Since h′(y) = 1 + k−y2

(k+y2)2 , we have h′(y) � 0 on [0,∞) if and only if

y4 + (2k − 1)y2 + k2 + k � 0 on [0,∞). This is equivalent to k � 1/8. Hence, according to
theorem 2.1, (3.6) has no periodic solutions in R2

+. So, we always assume that k ∈ (0, 1/8) in
the following discussion.

Clearly, 0 < y− =
√

−k + 1
2 (1 − √

1 − 8k) < y+ =
√

−k + 1
2 (1 +

√
1 − 8k) are the

positive zeros of h′(y) = 0. Thus, h′(y) > 0 if y ∈ [0, y−) ∪ (y+,∞) and h′(y) < 0 if
y ∈ (y−, y+). Hence, e� is locally asymptotically stable or unstable if δ ∈ (0, y−) ∪ (y+,∞)

or δ ∈ (y−, y+), respectively.
Now the proof is divided into the following three cases:

Case 1. δ � y+. If we can find c � 0 such that

ϕ(y)h′(y) � cψ(y) (3.7)

on R+, then according to theorem 2.1, we have that there are no periodic solutions on R2
+ for

system (3.6). Clearly, (3.7) hold on [0, y−] ∪ [y+, δ] for any c � 0. To make (3.7) hold on
(y−, y+) ∪ (δ,∞), we let Q(y) = ϕ(y)h′(y)/ψ(y) on [0,∞) − {δ} and

L(y) = y2 − y2
−

y2 + k
(y + y+).

Then,

Q(y) = L(y) +
y2 − y2

−
y2 + k

y + y+

y − δ
(δ − y+). (3.8)

From (3.8), δ � y+ and L(y) is an increasing function on (y−,∞), it follows that

Q(y) � L(y) � L(δ) on (δ,∞)
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and

Q(y) � L(y) � L(y+) on (y−, y+).

Choose c = L(y+), then (3.7) hold on R+.

Case 2. δ ∈ (0, y−]. Similar to case 1, if we can find c � 0 such that

ϕ(y)h′(y) � cψ(y)h(y) (3.9)

on R+, then according to theorem 2.1, we have that there are no periodic solutions on R2
+

for system (3.6). Clearly, (3.9) hold on [y+,∞) for any c � 0. To make (3.9) hold on
(0, δ) ∪ (δ, y+), we let P(y) = ϕ(y)h′(y)/ψ(y)h(y) on (0,∞) − {δ} and

l(y) = (y − y+)(y + y−)(y + y+)

y(y2 + k + 1)
.

Then,

P(y) = l(y) +
(δ − y−)(y − y+)(y + y−)(y + y+)

y(y − δ)(y2 + k + 1)
. (3.10)

Since

l′(y)y2(y2 + k + 1)2 = y(y2 + k + 1)
(
3y2 + 2y−y − y2

+

)
− (3y2 + k + 1)

(
y3 + y−y2 − y2

+y − y−y2
+

)
= −y−y4 + 2

(
k + 1 + y2

+

)
y3 + y−

(
k + 1 + 3y2

+

)
y2 + (k + 1)y−y2

+

= 2
(
k + 1 + y2

+

)
y3 + y−y2

(
k + 1 + 3y2

+ − y2
)

+ (k + 1)y−y2
+

> y−y2
(
y2

+ − y2
)

� 0 on (0, y+],

we have l(y) an increasing function on (0, y+). From (3.10) and δ � y−, it follows that

P(y) � l(y) � l(δ) on (δ, y+)

and

P(y) � l(y) � l(δ) on (0, δ).

Choose c = l(δ), then (3.9) hold on R+.

Case 3. y− < δ < y+. Let α = δ(k + 1)/k and β = 1. Define

f (y) = ψ(y)(h(y) + α) on R+.

Clearly,
f ′(y) = α + h(y) + ψ(y)h′(y)

= α + y +
y

y2 + k
+ (y − δ)

(
y2 − y2

−
)(

y2 − y2
+

)
(y2 + k)2

(3.11)

= α + y
y4 + 2ky2 + k(k + 1)

(y2 + k)2
− δ

(
y2 − y2

−
)(

y2 − y2
+

)
(y2 + k)2

(3.12)

> α + (y − δ)

(
y2 − y2

−
)(

y2 − y2
+

)
(y2 + k)2

≡ α + (y − δ)g(y). (3.13)

Since, g(0) = (k +1)/k and g(y) � 0 is a decreasing function on [0, y−], we have (y −δ)g(y)

is increasing function on [0, y−]. Hence, α + (y − δ)g(y) � α − δ(k + 1)/k = 0 for
all y ∈ [0, y−]. Now from (3.11) and (3.12), we have f ′(y) > 0 on R+. According to
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Figure 4. Parts (a), (c) illustrate the case when e� is the global attractor of (3.5) and (3.6),
respectively. Parts (b), (d) illustrate the case when a limit cycle is the global attractor of (3.5) and
(3.6), respectively.

theorem 2.3, if we can prove q(y) = (ϕ(y)h′(y) − ϕ(δ)h′(δ))/f (y) is a C1 function and
q ′(y) � 0 on R+. Then, since h′(δ) < 0, we conclude that there is at most one limit cycle in
R2

+. After a straightforward computation, one yields

ϕ(y)h′(y) − ϕ(δ)h′(δ) = y2 − δ2

(δ2 + k)(y2 + k)
[(δ2 + k)y2 + kδ2 + k(k − 2)]

and

q(y) = (ϕ(y)h′(y) − ϕ(δ)h′(δ))/f (y)

= (y + δ)(y2 + kθ)

y3 + αy2 + (k + 1)y + kα

where θ = (δ2 + k − 2)/(δ2 + k). Hence,

q ′(y)(y3 + αy2 + (k + 1)y + kα)2 = (3y2 + kθ + 2δy)(y3 + αy2 + (k + 1)y + kα)

− (y3 + δy2 + kθy + kδθ)(3y2 + 2αy + k + 1)

= (α − δ)y4 + 2(k + 1 − kθ)y3 + (δ(k + 1) + 3kα − kαθ − 3kδθ)y2

+ 2kαδ(1 − θ)y + kθ(kα − (k + 1)δ)

= δ

k
y4 + 2(k + 1 − kθ)y3 + (δ(k + 1) + 3kα − kαθ − 3kδθ)y2 + 2kαδ(1 − θ)y.

Since θ < 1 and 0 < k < 1/8, thus q ′(y) � 0 on [0,∞). This completes the proof of
example 3.3 (see figure 4). �
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4. Concluding remark

Note that all the examples in section 3 take the form

W ′(t) = p1(W) + p2(W)Z, Z′(t) = p3(W) − p2(W)Z, (4.1)

with suitable functions p1, p2, p3. Through the change of variables

x = W and y = W + Z,

system (4.1) becomes

x ′(t) = p2(x)y − xp2(x) + p1(x), y ′(t) = p1(x) + p3(x), (4.2)

which is a generalized Liénard system. According to theorem 2.2, if one can prove the
monotonicity of the function

− p2(x)(xp′
2(x) + p2(x) − p′

1(x))

(p1(x) + p3(x))(α + β(xp2(x) − p1(x)))

for suitable α, β � 0, then system (4.1) has at most one limit cycle.
It should be pointed that although we have established theorem 2.2, the problem about

the number of limit cycles for system (1.3) is still open.
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